The Inversion Problem for Computable Linear Operators
نویسنده
چکیده
Given a program of a linear bounded and bijective operator T , does there exist a program for the inverse operator T−1? And if this is the case, does there exist a general algorithm to transfer a program of T into a program of T−1? This is the inversion problem for computable linear operators on Banach spaces in its non-uniform and uniform formulation, respectively. We study this problem from the point of view of computable analysis which is the Turing machine based theory of computability on Euclidean space and other topological spaces. Using a computable version of Banach’s Inverse Mapping Theorem we can answer the first question positively. Hence, the non-uniform version of the inversion problem is solvable, while a topological argument shows that the uniform version is not. Thus, we are in the striking situation that any computable linear operator has a computable inverse while there exists no general algorithmic procedure to transfer a program of the operator into a program of its inverse. As a consequence, the computable version of Banach’s Inverse Mapping Theorem is a powerful tool which can be used to produce highly non-constructive existence proofs of algorithms. We apply this method to prove that a certain initial value problem admits a computable solution.
منابع مشابه
On the inversion of computable functions
The question of the computability of diverse operators arising from mathematical analysis has received a lot of attention. Many classical operators are not computable, and the proof often does not resort to computability theory: the function under consideration is not computable simply because it is not continuous. A more challenging problem is then its computable invariance: is the image of ev...
متن کاملComputable functional analysis: compact operators on computable banach spaces and computable best approximation
The present thesis deals with computable functional analysis and in this context, especially, with compact operators on computable Banach spaces. For this purpose, the representation based approach to computable analysis (TTE) is used. In the first part, computable Banach spaces with computable Schauder bases are introduced and two representations each are defined for the dual space of a comput...
متن کاملA new method for 3-D magnetic data inversion with physical bound
Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion is a common technique for the inversion of data. Physical bound constraint can improve the solution to the magnetic inverse problem. However, how to introduce the bound constraint into the inversion procedure is important. Imposing bound constraint makes the magnetic data inversion a n...
متن کاملNon-linear stochastic inversion of 2D gravity data using evolution strategy (ES)
In the current work, a 2D non-linear inverse problem of gravity data is solved using the evolution strategies (ES) to find the thickness of a sedimentary layer in a deep-water situation where a thick sedimentary layer usually exists. Such problems are widely encountered in the early stages of petroleum explorations where potential field data are used to find an initial estimate of the basin geo...
متن کاملClosed Sets and Operators thereon: Representations, Computability and Complexity
The TTE approach to Computable Analysis is the study of so-called representations (encodings for continuous objects such as reals, functions, and sets) with respect to the notions of computability they induce. A rich variety of such representations had been devised over the past decades, particularly regarding closed subsets of Euclidean space plus subclasses thereof (like compact subsets). In ...
متن کامل